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AN IMPROVED ALGORITHM FOR ADAPTIVE PROCESSING

INTRODUCTION

A discrete form of a least-mean-square (LMS) algorithm based on the method of
steepest descent was given by Widrow et al. [1] as a means of determining the weight
vectors for minimizing interference entering an adaptive array. Their algorithm becomes
unstable for fast adaptation, and this report will show that a modification to their algo-
rithm provides unconditional stability and better performance even for slow adaptation,

DISCUSSION
The steepest-descent algorithm was given in Ref. 1 as
WG +1) = W() - 2k; E() X(), (1)

where W(j + 1) is the weight vector to be used on the (7 + 1)th input data sample, X(j)
is the jth input data sample, kg is a scalar constant, and E(j) is the error signal developed
on the jth data sample and is given by

E@) = d() - WT () X()),
in which d(j) is the jth sample of the desired signal and WT is the transpose of W.

In general X(j) and W(j) are multidimensional vector quantities. A form of this equa-
tion is given in Ref. 2 for the case of an Applebaum-Howells implementation as

W+ 1= w0 (1-2) + (9 sy v o, (@)

where 7 is the filter smoothing constant, G is the gain term, V; (j) is the input from the
ith array element, with V,-* being the conjugate of V;, and

N
E() = PG) Z W, 0) V; 0),
i=1

in which P(j) is the pilot signal.

To simplify the analysis, we consider the special case of a single adaptive loop in a
sidelobe-canceler configuration [3] as shown in Fig. 1. In Fig. 1 the main input is ob-
tained from a radar antenna and the auxiliary input is obtained from an omnidirectional
antenna whose gain is normally greater than the sidelobe level of the radar antenna. With-
out loss in generality the pilot signal is taken as the main input, since the adaptation

Manuscript submitted November 8, 1976.
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Fig. 1 — A basic sidelobe-canceler loop

criterion (LMS) is unchanged. The single sidelobe canceler corresponds to Fig. 8 in Ref. 1,
with the error signal defined as

E(t) = V. (t) = V,,, (t) - W(t) V, (1),

where V, (1) is the residue signal, V,, (t) is the radar-channel signal, which is taken as the
desired signal response in Ref. 1, W(t) is a weight signal, V, (t) is the auxiliary-channel
signal, and all functions correspond to complex modulation functions. The sidelobe-
canceler interpretation is also discussed in Ref. 4. From (2) the adaptation algorithm
for the sidelobe canceler becomes

W + 1) = KW() + G(1 - K) E() V, (), (3a)
with

EG) = Vi () - W) V, (), (3b)

where

1
K=1 '7" 1- 27Tf3dB,

in which fz;p is the integrating-filter 3-dB bandwidth normalized to the sampling fre-
quency f;.

(S
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From (3a) it is seen that the next weight W(j + 1) is derived in terms of the present
weight and present value of E(j) Va* (). The weight W(j + 1) is then used with the next
auxiliary signal input to determine the residue. For fast loops, W(j + 1) derived from the
present data is not the proper weight for the new input data. The effect is to introduce
a phase shift, not present in actual loops, which causes loop instability. To avoid this
instability and to provide better cancellation performance and more realistic loop simula-
tion, a preferred algorithm is

WU) = KW@ - 1) + G( - K) E() V. (j), (4a)
with

E() = Vp, () ~ W) V,(). (4b)
In this algorithm the weight applied to V, () is derived in terms of present input values.
In effect the weight is taken prior to the delay in Fig. 7 of Ref. 1 rather than after it,
Thus the weight is proper for the current data input rather than for the input data one
sample interval earlier.
STABILITY CONSIDERATIONS
The steepest-descent algorithm given by (3) is
Wi +1) = KW() + G(1 - K) [V,,(j) - W(j) V,()1 v, (). (5)

For a step input with V,(j) equal to a constant and also equal to V,,(j) so that the signals
are perfectly correlated, (5) may be written as

W +1) = W(j) (K -A) + A, (6)
where
A = G(1 ~K) |V, () 2.

Letting W(1) equal 0, it is found from several iterations of (6) that the general term is

A (1 -xN-1)
1

W) === (7
where
x =K -G(1-K)|V,)2.
For stability it is required that lx] <1 or
IG(1 - K) |V,|2-K| < 1. (8)
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Substituting the value
K=1-7r1-=1-21rf3d3
in (8) leads to
(1 + G) |V, |2 nfzgp <1. 9)
Also, the weight will not ring in amplitude for A less than unity.
A stability condition derived for the sidelobe canceler version of (1) is found to be
11+ 2k,V,12| < 1,

which agrees with the stability condition given by equation (27) in Ref. 1, with IVaI2 in
our case being equal to the unique eigenvalue.

Computer simulations were run to demonstrate the instability associated with use of

(3) and are shown in Figs. 2a and 2b. In these simulations G equals 100 and [V, |2 equals
2. From (9) the stability condition for the specified values of G and IV,,|2 is

fsap < 0.00158. (10)
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Fig. 2a — Response of the steepest-descent algorithm
when f3,, = 0.00155
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Fig. 2b — Response of the steepest-descent algo-
rithm when f3,, = 0.00162

Figure 2a shows a dampled oscillation occurring for f3;p equal to 0.00155, and Fig. 2b
shows instability occurring for f3,5 equal to 0.00162, with the weight phase alternating
between 0 and 180 degrees and the weight magnitude growing unbounded.

For the improved algorithm the general weight term of (4) for a step input of con-
stant value and V,,, equal to V;, may be shown to be

C (1 -DN)
1= °

T —

W(N) = (11)

where

and

Since D is less than unity, W(IN) is unconditionally stable. In Fig. 3 the response to a
step input is plotted using the improved algorithm for the same value of f3;5 (0.00162)
which caused unstable operation of the steepest-descent algorithm (Fig. 2b). There is
no overshoot or ringing in Fig. 3, since the response is unconditionally stable.
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Fig. 3 — Response of the improved algorithm
when fadB = 0.00162

SIMULATION OF RANDOM INPUTS

Computer simulations were run using independent samples of a Gaussian random pro-
cess having a mean of 0 and a variance equal to 2. Successive samples were correlated by
taking a sliding-window average of two samples and renormalizing so that the resultant
power remained equal to 2. The same samples were then applied to the main and auxiliary
channels of the sidelobe canceler. The steepest-descent algorithm and the improved algo-
rithm were compared for an input step of random values which were the same for each
simulation. In these simulations a constant target signal was introduced in the radar chan-
nel at sample number 250 at a clutter-to-signal level of 20 dB.

The steepest-descent and improved algorithms are shown in Figs. 4a and 4b for f3;p
equal to 0.00025, which corresponds to an effective loop bandwidth (Bg) to jammer band-
width (B) ratio of 0.1. Bp is defined as

BE = (1 + GIValz)deB'

Comparison of Figs. 4a and 4b shows that the steepest-descent algorithm gives more points
of lower cancellation (under the 40-dB line for example) than the improved algorithm gives.
This is attributed to the ringing in the steepest-descent algorithm which is present even for
the slower loop adaptation. Ringing will occur, as previously mentioned, when A of (7)

is greater than 1. Thus use of the relation

A=G1-K)IV,()12<1

and of the loop parameters G = 100 and f3;5 = 0.00025 leads to the requirement for
ringing that

IV,i) | > 2.52.

e — B————
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Fig. 4a — Response of the steepest-descent algo-
rithm when fz,5 = 0.00025
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Fig. 4b — Response of the improved algorithm
when f3,, = 0.00025

Since V,(j) is a Gaussian random variable with a mean of 0 and a variance equal to
2, |V4()! is Rayleigh and the probability of |V, (j)| being greater than 2.52 is

PRIV, ()] > 2.52) = ¢(252%)/4 = 0,20,
Hence ‘2ere is a 20% probability of causing ringing in this slow-loop simulation. The result

of this ringing is to cause degraded cancellation of jamming signals which is due strictly to
the algorithm.
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In Figs. 5a and 5b the steepest-descent and improved algorithm results are shown for
faap = 0.00124, or correspondingly Bg/B; = 0.5, and poor performance is seen to result
for the steepest-descent algorithm whereas good performance is obtained with the improved
algorithm. For the case of fogp = 0.9025, or Bg/B; = 1, the steepest-descent algorithm
gives unstable loop performance and (Fig. 6) the improved algorithm gives stable perfor-
mance.
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200
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Fig. 5a — Response of the steepest-descent algo-
rithm when fadB = 0.00124
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Fig. 5b — Response of the improved algorithm
when fg,p = 0.00124
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Fig. 6 — Response of the improved algorithm
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SUMMARY

A comparison of algorithms was shown for a single loop in a sidelobe-canceler applica-
tion as an illustration. The concept generalizes to any adaptive processing which minimizes
the mean-square error. The generalization of (4) for M multiple loops is given for the ith

weight by
W0) = KW - 1) + G(1 - K) Eg) VT (), (12a)
with
M
o
EG) = V,, () - Z W, () V,0). (12b)
n=1
A simplified version of this algorithm 1s given by
W) = KW - 1) + G(1 - K) Eg) V), (13a)
with
Y]
i
E() = Vo, () = Wij) Vi) - Z W.0 - DV, (). (13b)
n=1
n#y

In this simplified algorithm each weight is found in a closed-loop fashion, as in the single-
loop case, while the other weights are frozen. The actual residue signal resulting from
this algorithm is then taken to be
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M
n=1

where the weights are derived as just explained.

In conclusion it has been shown that the improved algorithm is unconditionally stable
and provides better performance than the LMS algorithm based on the method of steepest
descent. The steepest-descent algorithm was shown to cause a degradation in cancellation
performance due to its tendency to ring when driven by random noise even for loop para-
meters which are slow on the average. Also, the improved algorithm provides a more
accurate means of simulating actual adaptive-loop performance.
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